Component 2 - Paper 2 exam for Topics 4, 5, and 6

Topic 4: The UK's Evolving Physical Landscape

COASTS AND RIVERS

Instructions

- 1. You will need to use either your revision guide, the knowledge organisers that are on the Show My Homework post, or the department's website: http://www.fulstonmanorgeoggers.weebly.com
- 2. You are to read carefully the task set on each page and then complete the task in full sentences where expected.
- 3. If you get stuck, remember the three Bs Book, Brain, Boss!
- Book Check your resources first (revision guide, knowledge organiser, website)
- Brain Think it through, you may really already know but are doubting yourself
- Boss email your teacher, message them on Show My Homework, or on Google Classroom for support

UK Physical Landscapes

Key words

Upland area _		 	
Lowland area _		 	
Delief of the	and		

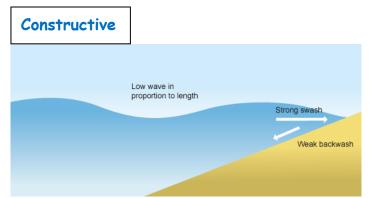
Describe the location of the upland areas (brown) (Use compass directions, as well as countries of the UK)	e

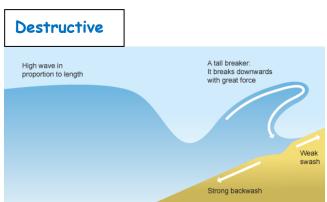
Describe the location of the lowland areas (dark green) (Use compass directions, as well as countries of the UK)

Rock types of the UK

Describe the key differences between the different rock types found in the UK.

Main UK ro	ck types	Chalk and clay landscapes	
	chalk	 Chalk is strong and permeable – water moves through it. It forms cliffs when it occurs at coastlines. 	
sedimentary	limestone	· Chalk is only found in lowland Britain.	
	clay	 Clay is weak and impermeable – water cannot move through it. 	
igneous granite		Clay is found all over Britain. Clay landscapes are typically wide, flat plains	
	schiete	with lots of lakes, streams and rivers.	
metamorphic <	slate	apring acarp dry dip line alope valley alope	
Sec	dimentary, igneous and camorphic rocks in the UK	clay	
Water drai	ning through the chalk flows	spring water table clay chalk	


Coastal Landscapes


Waves

What causes a wave?				
	 	 		
What is the fetch?				
	 	 		

Types of waves

There are two types of waves: constructive and destructive. Complete the table below to show the characteristics of each wave using the image to help you:

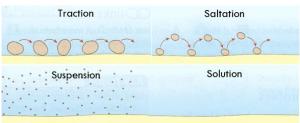
Wave characteristic	Constructive wave	Destructive wave
Which has the highest waves?		
Strength of swash		
Strength of backwash		
Beach sediment - gain or loss		

Weathering

What is weathering?

	What is mechanical (physical) weathering?
Contractor	
What is chemical weathering?	
What is mass movement?	
Complete the simple diagrams an	d definitions to show the different types of mass movement:
Fall (Eg Rockfall)	
	<u>Slump</u>

Erosion


Complete the table below describing the four types of erosion found at the coast:

Hydraulic action	<u>Abrasion</u>
<u>Attrition</u>	Solution

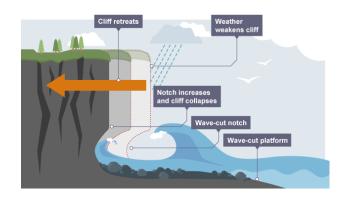
Transportation

Do the same in the table below to describe the four types of transportation found at the coast:

Traction	<u>Saltation</u>
<u>Suspension</u>	Solution

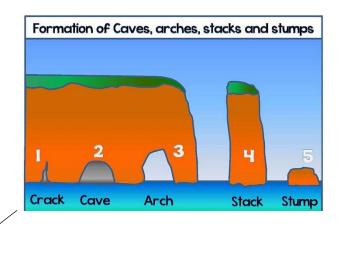
Draw an annotated diagram in the box below to explain the proc	ess of longshore drift:
Nama sisian	
Deposition	
What is coastal deposition?	
Give 2 reasons why coastal deposition occurs:	
•	
•	

Landforms created by erosion


Landforms at the coast are the result of rock type (hard and soft) as well as physical processes (Erosion or deposition)

Headlands and Bays

Cliffs and wave-cut platforms


Complete annotated diagrams below to explain how a wave-cut platform is created (Remember to include the erosional processes!)

Step 1	Step 2
Step 3	Step 4

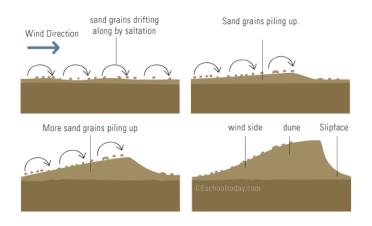
Caves, cave, arches, stacks and stumps

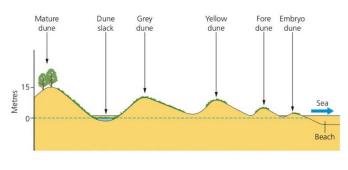
Name an example in the UK

Explain how each one causes the next. The first one has been done for you (Remember to include the erosional processes!)

A crack opens up in a headland due to hydraulic action opening up a weakness in the rock

Landforms created by deposition


Landforms at the coast are the result of rock type (hard and soft) as well as physical processes (Erosion or deposition)


Beaches

Beaches are deposits of sand and shingle at the coast. Explain how both sandy and pebbly beaches form:

Sandy:	 	
	 	
Shingle/pebble:	 	

Sand dunes

Explain the formation of sand dunes

Step 1			 		
 Step 2			 		
Step 3			 		
		 	 	 	
Step 4	 		 		

Spits and Bars

Spits are long, narrow tingers of sand or shingle jutting out into the sea. A bar is a spit that has grown across a bay.		
Example in the UK		
Drawing (2)	Explanation	
Drawing (3)	Explanation	
Drawing (4)	Explanation	
. (5)		
Drawing (5)	Explanation	

Managing Coastal Erosion

Different management strategies can be used to protect coastlines from the effects of physical processes

Hard engineering:

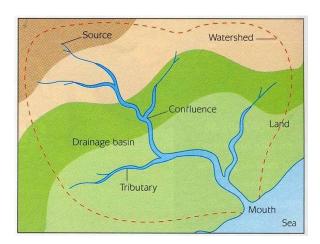
Soft engineering:	
Managed retreat:	
Complete the tables explaining how these meth	ods work and colour code into hard and soft
Sea Wall	Groynes
How does it work?	How does it work?
Advantages	Advantages
Disadvantages	Disadvantages

Rock Armour	Gabions
How does it work?	How does it work?
Advantages	Advantages
Disadvantages	Disadvantages

Beach nourishment	Sand dune regeneration
How does it work?	How does it work?
Advantages	Advantages
Disadvantages	Disadvantages

Cliff stabilisation	
How does it work?	
Advantages	Disadvantages
An example of a coastal management scheme in	the UK: Lyme Regis
Why does the Lyme Regis need protecting?	
	the contract of the
List 4 specific strategies used in the Lyme Reg	is to protect the coastline:
1	
2	
3	

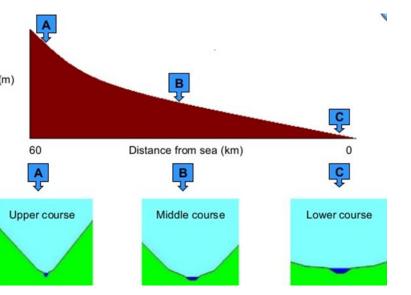
4. ____


What are the positive and negative impacts of the defences on the area?

Positive impacts	Negative impacts

River Landscapes

Features of a river


Annotate on the definitions of the key words of a drainage basin

The long profile

The shape of river valleys changes as $_{\text{Height (m)}}$ rivers flow downstream

The long profile of the river is

re three parts to the river
_

The cross-profile

The cross profile of the river is _____

The cross-profile of the river changes. Describe what happens to the width and the depth

	Width	Depth	Main process found here
Upper course			
Middle course			
Lower course			

Bradshaw Model

Upstream Downstream Discharge	The Bradshaw model looks at the changes in the river from the upper course to the lower course
Occupied channel width	What things are expected to increase?
Channel depth Average velocit	✓
Load quantity	✓
Load particle size	. 🗸
Channel bed roughness	√
Slope angle (gradient)	1 🗸

What things are expected to decrease?

\checkmark
\checkmark
iver discharge increases because
elocity of the river increases because
article size decreases because

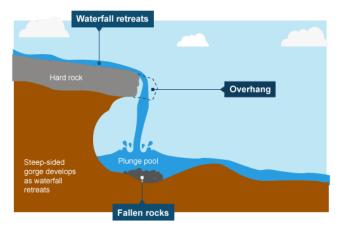
Upper Course of the river

The main process here is	As well as the 4 types of erosion. Erosion can go
vertically (Cutting downwards) or h	norizontally (laterally - Going sideward). It is these
processes that change the shape o	of the cross profile from the source (Upper course) to the
mouth (lower course).	

Complete the table below describing the four types of erosion found in a river:

Hydraulic action	Abrasion
<u>Attrition</u>	<u>Solution</u>

V shaped Valleys and interlocking spurs


Explain the formation of V shaped valleys and interlocking spurs (don't forget to include erosional processes!)

Interlocking Spurs	
V-shaped valley Photo source www.geographyphotos.com	Source V-Shaped Valley
	Interlocking Spur Spur River bank Channel
	Load River Bed

Waterfalls and gorges

Explain and use diagrams below to explain the formation of waterfalls and gorges: (don't forget to include erosional processes!)

Step 1	
Step 2	
Step 3	
Step 4	
<u>Step 5</u>	

Middle Course of the river

✓ Slip off slope

Features are formed by erosion and deposition in the middle course of a river. Much of the material eroded in the upper course gets transported through the middle course.

Describe the four types of transportation in a river:

Traction	Saltation
Suspension	Solution
Meanders Meanders are	
Their cross profile is asymmetrical (not the	
Draw the cross section and label with the key words V Outside of the river V Inside of the river V Fastest flow of water (Thalweg) V Centrifugal force (Force making the water go to the outside) V River cliff	

Processes on a meander bend	
	Using the diagram to help, explain the
·	formation of a meander
Where there is less water on the inside there Inside	
is more friction and slower of Bend	
Deposition Outside of Bend	
Fast flowing water	
is directed to the	
outer bank	
(13)	
Ox Bow Lakes	
Draw and explain the formation of ox-bow lakes	; :
Step 1	
<u> </u>	
Step 2	
<u> </u>	
Step 3	
<u> </u>	
Chan 4	
Step 4	

Lower course of the river

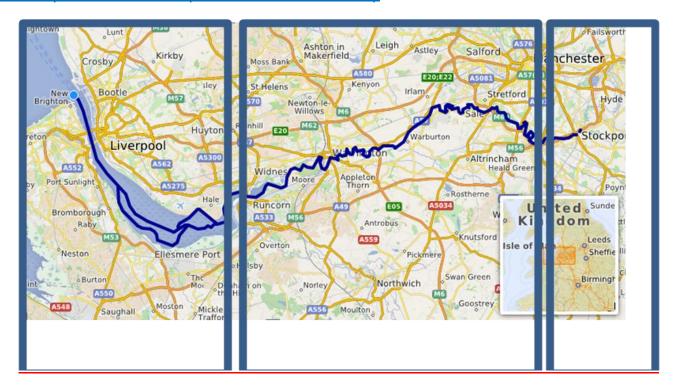
The river here is its widest and deepest. The river here also flows the fastest, but where it meets the sea, the different types of water (fresh vs salty) causes the river to deposit the material.

Material is also deposited when the river floods.

Levees and floodplains

Draw annotated diagrams below to explain the formation of levees and floodplains:

When a river floods		
it		


Estuaries

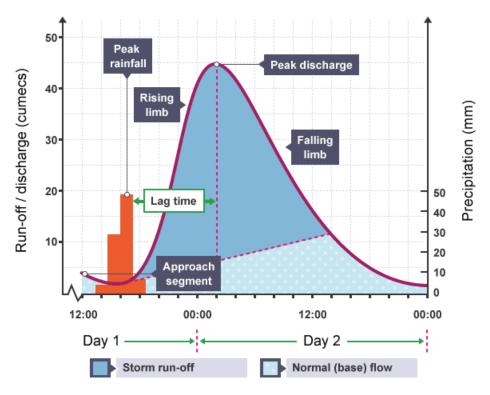
	1
	427
	1
	The same of the sa
	200
	-22
© Doc Searls	

These are found where rivers mee	t the The two	
waters are different densities and	d salt quantities and mix	
together to create a type of water known as		
water. Here,	happens and sediment is	
first deposited to form	Overtime	

sediment can grow on them and _____ grow in parts of the estuary.

An example of a river valley in the UK: River Mersey

Identify which section of the river is the upper, middle and lower (Write them underneath)
What places are in each of the sections?


Upper
Middle
What lands are a would be sound in each of the goations?
What landforms would be found in each of the sections?
Upper
Middle
Lower

River flooding

Explain some physical and human causes of flooding - make sure you can explain how each one leads to flooding:

Physical/Natural	Human
Heavy rainfall =	Urbanisation =
Rock type =	Deforestation =
Gradient of land =	River management =

Flood hydrographs

Discharge	
_	
Lag time	
How would you describe the shape of this hydrograph? _	

Is this river likely to flood?

Flood management

Disadvantages

3			
What is hard and soft e	ngineering?		
Hard engineering is			
Soft engineering is			
Complete the tables exp	laining how these meth	ods work and colour code into har	d and soft
Dams/ reservoirs		Levees	
How does it work?		How does it work?	
Advantages		Advantages	

Disadvantages

Flood relief channels	Dredging
How does it work?	How does it work?
Advantages	Advantages
Disadvantages	Disadvantages

Afforestation	Flood plain zoning Pasture for grazing Playing Area avoided Playing Roads Industry Housing Land uses increase in value as distance from river increases
How does it work?	How does it work?
Advantages	Advantages
Disadvantages	Disadvantages

An example of a flood management scheme in the UK: Somerset Levels

Why did	Somerset	need o	flood	management
project?				

	7

cribe 4 of 1	the strategies used in Sc	omerset to reduce the ris	k of flooding:
plete the t eme.	able below showing the c	osts (disadvantages) and	benefits (advantages) or
•	able below showing the c	eosts (disadvantages) and Economic	benefits (advantages) or Environmental
•			
•			
•			
•			